If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-2n-240=0
a = 4; b = -2; c = -240;
Δ = b2-4ac
Δ = -22-4·4·(-240)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-62}{2*4}=\frac{-60}{8} =-7+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+62}{2*4}=\frac{64}{8} =8 $
| (5x+7)/5=(3-10x)/7 | | (x-5)^2-20=0 | | 3m-6=39 | | 11/8=g-4/5 | | x-5^2-20=0 | | n+2=-14-5 | | x-x/10=120 | | 5x+10(19-x)=155 | | x-18/2=-4 | | 8x-(x+3)=4 | | 2=d-96/2 | | 4(d+12)=92 | | 6x-12+3x=24 | | 7m-9=33 | | r/5-5=3 | | 4+5x=5+3x | | 4(x+1)=6x+3-2x+1 | | 2x+3=-x-14 | | 4=f/4-1 | | 2=4.6/x | | 98=z/7+89 | | -5(x-1)+2(x-2)=4 | | d+23/6=6 | | Z=1/4(3/2)^t | | 5(r+2)=35 | | W=(2/3)^t | | 3(-4x-2)=18 | | Y=3^t | | 20x+14=-3x^2 | | 5x-25-3x+15=-10 | | Q=3.1(0.78)^t | | 14-3u=5 |